Show that the set of Turing Machines that accept only a finite number of strings is not Recursively Enumerable.

Proof. We reduce the complement of the halting language to this. Suppose we have an (M, w) pair. Build M^{\prime} so that (a) M^{\prime} accepts all strings of length 2 or less, and (b) if $|x|>2 \mathrm{M}^{\prime}(\mathrm{x})$ simulates M on w for $|x|$ steps. If M halts on w within $|x|$ steps M^{\prime} accepts x; otherwise M^{\prime} rejects x. If M does halt within n steps M^{\prime} accepts all x with $|x|>=n$, which is an infinite set. If M does not halt on $w M^{\prime}$ accepts only the strings of length 2 or less, which is a finite set. If we could recognize if M^{\prime} accepts only a finite set of string we could also recognize if M does not halt on w. But we can't.

